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Abstract
The dynamic equations of a colloidal particle with a homotropic anchoring are
solved in the presence of another fixed particle, when hyperbolic hedgehog
defects are created on one or other side of them. The velocities of the particles
are obtained in terms of the parameter q = γ⊥/γ‖; then a polar equation of
the path is calculated for q = 3/2. The same procedure has also been used for
colloidal particles with a planar anchoring to obtain the velocity and path of a
moving particle.

1. Introduction

Colloidal dispersions [1] are used extensively in our daily life, and they can be found in such
substances as foods, drugs and paints. Therefore they have long been an important subject in
technological and scientific research. Recently, colloidal dispersions in anisotropic host fluids
such as liquid crystals [2–5] have attracted a wide interest as a different class of composite
materials compared to conventional colloids with isotropic hosts. One of the interesting
and important features of liquid crystal colloidal dispersions is that elastic distortions of the
liquid crystal host can mediate a long-range interaction between particles immersed in it,
unlike conventional colloids and emulsions [6–9]. The elastic distortions of the liquid crystal
host arise from the anchoring of the mesogenic molecules on the surfaces of the dispersed
particles. The resulting interaction forces mediated by the liquid crystal can be measured in
experiments [6–10].

A full theoretical analysis of this problem is virtually impossible because of highly
nonlinear problems in a complex geometry. A single particle breaks the continuous rotational
symmetry of a liquid crystal. It behaves topologically as a core of an orientational defect,
when the surface anchoring is sufficiently strong. Various types of topological defects such as a
hyperbolic hedgehog, a Saturn ring, and boojums, have been recently reported in liquid crystal
colloidal dispersions. Ruhwandl and Terentjev [7] found that the interaction between spherical
particles with weak surface anchoring is quadrupolar, with the potential being proportional to
r−5, with r being the interparticle distance. Lubensky et al [8] showed by a phenomenological
argument that particles carrying a hyperbolic hedgehog [2, 3] act as a dipole. They have
formulated a theory of elastically mediated forces between particles with hyperbolic hedgehog
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Figure 1. Polar variables r and θ with respect to n0.

defects [8]. The hyperbolic hedgehog defect is created to one side of the particle with a
homotropic anchoring surface along the surrounding director field, in order to satisfy a total
topological charge of zero. Thus induced distortion of the liquid crystalline order assumes a
dipolar property. It leads to chain formation owing to the balance of the long-range dipolar
attractive and the short-range defect-mediated repulsive interactions. Yada et al [10] reported
quantitative evaluation of anisotropic interactions between solid particles dispersed in a nematic
liquid crystal. They introduced two types of anisotropic spatial distribution of the trapping
forces between particles with hyperbolic hedgehog defects, leading to a linear chain form.
They obtained the force map and compared it with the theoretical distribution of the dipolar
attractive forces between the particles.

Particles in motion give rise to a wealth of interesting physics. A theoretical treatment of
particles in motion has to deal with the dynamic equations of a nematic liquid crystal, i.e. the
Ericksen–Leslie equations, which couple the director field and the fluid velocity. Due to their
complexity, only a few examples with an analytical solution exist [11].

However, to our knowledge, in spite of the wealth of theoretical and numerical studies
on the elastic-distortion-mediated particle interactions there have been no theoretical studies to
discuss the trajectory of particle motion to form a linear chain. The purpose of this paper
is to present our attempt to study this subject analytically. However, we know that a full
analytical analysis is virtually impossible, due to intrinsic difficulties in the treatment of the
elasticity of liquid crystals, such as the nonlinear nature, the presence of topological defects,
and hydrodynamic interactions.

However, we obtain the trajectory of particle motion in the presence of another particle in
a nematic liquid crystal medium. The article is organized as follows. After formulation of the
problem and obtaining the equations for components of the velocity of the moving particle, the
trajectory of the particle is finally obtained.

2. Formulation of the problem

2.1. Hedgehog defects both on the left side of two particles

In this subsection we assume a configuration of two particles having hedgehog defects both on
the left side in a uniformly aligned nematic liquid crystal. The particles are considered along
a direction nearly perpendicular to the z axis (e.g. they are set by laser-trapping forces); see
figure 1. If one of the particles is supposed to be trapped at the centre of the coordinate system
and then the other particle is released from the trap, it starts gradually to move in an arc and
to approach the fixed particle. These results have been observed in experiments by Yada et al
[10]. In the following our aim is to calculate the mathematical equation of this arc.
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Following the phenomenological theory of Lubensky et al [8] on the particle–particle
interactions which are mediated by the nematic liquid crystal, one can write the effective free
energy as

F = K
∫

d3r
[

1
2 (∇nμ)2 − 4π Pz∂μnμ + 4π(∂zczz)∂μnμ

]
(1)

where the dipole-bend coupling term has been neglected to leading order in deviations of the
director from uniformity. The dipole moment of the particle P prefers to align with the local
director n. This is nearly in the far field, which is the case under our consideration here.

The interaction energy between the particles at positions r(0, 0) and r(r, θ) with respective
dipole and quadrupole moments Pz , P ′

z , c and c′ is [8]

U(r) = 4π K [Pz P ′
z Vpp(r) + 4

9 cc′Vcc(r) + 2
3 (cP ′

z − c′ Pz)Vpc(r)] (2)

where the interaction energy functions Vpp(r), Vcc(r) and Vpc(r) are

Vpp(r, θ) = r−3(1 − cos2 θ) (3)

Vcc(r, θ) = r−5(9 − 90 cos2 θ + 105 cos4 θ) (4)

Vpc(r, θ) = r−4(15 cos2 θ − 9). (5)

Here we ignore the quadrupole interparticle interaction, whose contribution to the force
is much smaller than that of the dipolar interaction at large distances; even when the moving
particle approaches the fixed particle, r = 2a, this interaction is small compared to the dipolar
one (see below) [8]. We consider two spherical particles of radius a, positioned at r(0, 0) and
r(r, θ), such that the interparticle distance is larger than the typical dimension of the particle;
r and θ are the polar variables. When the particles are interacting via the dipole–dipole forces,
the interaction energy is expressed in terms of the dipole moment pz and the dipole–dipole
potential Vpp(r) from equations ((2)–(5)):

U(r, θ) = 4π K p2
z Vpp(r, θ) (6)

where K is the Frank elastic constant for the nematic director field in the one-constant
approximation [12], with pz = αa. The interparticle force can be calculated by

F = −∇U(r, θ)

F = d

r 4
{(1 − 3 cos2 θ)êr − 2 cos θ sin θ êθ } (7)

where êr and êθ are polar orthogonal unit vectors and d = 12π K P2
z .

The particle positioned at r(0, 0) is fixed with its centre located at the origin of the
coordinate system. When the other particle is released, they are approaching each other, with
the friction force balancing the dipolar force. The experimental results [10] show that the
trajectory of particle motion is in the plane of the initial distance of two particles, the y-axis, and
the unperturbed director n0, the z-axis (see figure 1). There is only one preferred direction in the
problem, namely, the unperturbed director n0 at infinity, which is along the z-axis. Therefore,
the velocity v(r) and the viscous force Fv should be decomposed into components parallel to z
and normal to it, as follows:

v(r) = vy ĵ + vz k̂, (8)

Fv = −γ‖vz k̂ − γ⊥vy ĵ (9)

where the effective coefficients of viscosity γ⊥ and γ‖ are independent of the variables x and
y [18]. vz , vy , k̂ and ĵ can be written in the terms of vr , vθ , êr and êθ , i.e.

k̂ = êr cos θ − êθ sin θ; ĵ = êr sin θ + êθ cos θ (10)

vz = vr cos θ − vθ sin θ; vy = vr sin θ + vθ cos θ. (11)
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r/
a

Figure 2. r/a is plotted versus θ for homotropic anchoring.

By substituting equations (10) and (11) into (9) we have

Fv = −γ‖{[F(θ)vr + (1 − q) sin θ cos θvθ ]êr + [Q(θ)vθ + (1 − q) sin θ cos θvr ]êθ } (12)

where q = γ⊥/γ‖ and

F(θ) = 1 + (q − 1) sin2 θ

Q(θ) = q + (1 − q) sin2 θ.
(13)

The equation of motion describing the acceleration and velocity of the fluid with dispersed
particles is simply Newton’s law:

m
dv

dt
= Fd + Fv (14)

where Fd and Fv represent the dipole–dipole interaction force and viscous force, respectively.
We limit our attention to the viscous and dipole–dipole interaction forces, which is a

reasonable limitation for small particle velocity, and since in the case of small particle velocity
(to be precise, small Ericksen number characterizing the ratio of the viscous and elastic forces)
one may put the left-hand side of equation (14) to zero, hence we have

γ11{vr F(θ) + (q − 1)vθ sin θ cos θ} = d

r 4
(1 − 3 cos2 θ)

γ11{(q − 1)vr sin θ cos θ + vθ Q(θ)} = −2d

r 4
cos θ sin θ.

(15)

By solving equations (15) in terms of vr and vθ and taking the initial conditions into
account, we have

vr = d

qr 4γ‖
[−2q − 1 + (7q − 4) sin2 θ − 5(q − 1) sin4 θ ]

vθ = − d

qr 4γ‖
sin θ cos θ

(
1 + 5

2
sin2 θ

)
.

(16)

By taking r0 = σ a and q = 3/2, we have

r

a
= σ sin4 θ

/(
1 − 5

7
cos2 θ

)5/2

. (17)

In figure 2, r/a has been plotted versus θ for σ = 5 [10]. It is interesting to note that when
the particle at r0, θ � π/2 is released from the laser trap, the dipolar force causes the particle
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to move towards smaller angles θ (i.e. the positive z-axis) whereas for θ0 � π/2 the released
particle moves towards the negative z-axis (see also section 2.2). Regardless, in both cases the
two particles will reach each other at angles θc1 = 29.23◦ and θc2 = 150.77◦.

2.2. Hedgehog defects on different sides of two particles

In this subsection we assume a configuration of two particles having hedgehog defects on
different sides in a uniformly aligned nematic, i.e. Pz = −P ′

z . The initial configuration of
the problem is the same as in the problem considered in section 2.1. Since the procedures of
the calculation is similar to the considered one Pz = P ′

z , we here mention only the differences.
The interaction energy and interparticle force are respectively

U(r, θ) = −4π K p2
z Vpp(r, θ) (18)

F = − d

r 4
{(1 − 3 cos2 θ)êr − 2 cos θ sin θ êθ }. (19)

The equation of motion gives

γ11{vr F(θ) + (q − 1)vθ sin θ cos θ} = − d

r 4
(1 − 3 cos2 θ)

γ11{(q − 1)vr sin θ cos θ + vθ Q(θ)} = 2d

r 4
cos θ sin θ.

(20)

By solving the above equations with initial conditions we get

vr = − d

qr 4γ‖
[−2q − 1 + (7q − 4) sin2 θ − 5(q − 1) sin4 θ ]

vθ = d

qr 4γ‖
sin θ cos θ

(
1 + 5

2
sin2 θ

)
.

(21)

If we take r0 = σa, θ0
∼= π/2, and q = 3/2, we finally get the same results as

equation (17), i.e.

r

a
= σ sin4 θ

/(
1 − 5

7
cos2 θ

)5/2

. (22)

The only difference with the previous case (section 2.1) is in the direction of motion of the
particle. Here if we put the moving particle initially at r = r0 and θ = θ0 � π/2(� π/2), then
on releasing the laser force on it, the particle will move upwards and go towards the negative
(positive) direction of the z-axis.

3. Effects of the quadrupolar terms

As we mentioned previously, the long-range attraction force between droplets in a nematic
solvent has been confirmed theoretically and experimentally [6, 10, 16], for dipolar interparticle
interaction. For short distances this attractive dipolar force turns into a repulsive force [17]. In
our problem, the main formula, equation (22), was obtained by only taking into account the
dipolar forces and it is not applicable to short distances and small angles. The nearest distance
in the problem is 2a. The ratio of the magnitude of quadrupole to dipolar forces is equal to
0.03 (see below). For short distances, which is the case for planar anchoring [17], we may only
consider the quadrupole forces in equations (2) and (9) and ignore the dipolar forces. If we
consider the quadrupole potential [18]

U(r) = 16π

9
K cc′ 1

r 5
(9 − 90 cos2 θ + 105 cos4 θ) (23)
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r/
a

Figure 3. r/a is plotted versus θ for planar anchoring.

the quadrupole force is written as

F = −∇U

= g

r 6
[5(3 − 30 cos2 θ + 35 cos4 θ)êr − (60 − 140 cos2 θ) cos θ sin θ êθ ] (24)

where c and c′ are quadrupole moments, and g is defined as g = (16π/3)K cc′.
Following the same procedure as in previous section, the equations of motion are obtained:

γ11{vr F(θ) + (q − 1)vθ sin θ cos θ} = −5g
(
3 − 30 cos2 θ + 35 cos4 θ

)
/r 6

γ11{(q − 1)vr sin θ cos θ + vθ Q(θ)} = −g
(
60 − 140 cos2 θ

)
cos θ sin θ/r 6.

(25)

Solving the above equations with the initial conditions we get

vr = g

qr 6γ‖
[(sin2 θ + q cos2 θ)(3 − 30 cos2 θ + 35 cos4 θ)

+ (q − 1)2 sin2 θ cos2 θ(60 + 140 cos2 θ) − 8q]
vθ = g

qr 6γ‖
[−15 − 45q + (−80q + 90) cos2 θ + (140q − 315) cos4 θ ] cos θ sin θ.

(26)

For r = 2a and θ = θc the ratio of the magnitude of quadrupole to dipolar force is equal to
0.03, for α = 2.05, β = 0.2 [17]. By taking r0 = 2a and θ0

∼= 0, the path of the particle with
planar anchoring and q = 3/2 is

r/a = 2
[

1
29 (11 + 4 cos2 θ + 14 cos4 θ)

]0.7

× exp[1 − 1.13 arctan(0.16 + 1.14 cos2 θ)]/(cos θ)0.11. (27)

In figure 3, r/a has been plotted versus θ .
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4. Some remarks and conclusions

We have obtained the trajectory of particle motion in the presence of another particle immersed
in a nematic liquid crystal. The spherical particles, of radius a, are positioned at r(0, 0) and
r(r, θ). In section 2 we supposed that the long-range attraction force dominates between the
particles immersed in the liquid crystal. The polar components of the velocity and the path of
the particle for q = 3/2 have been obtained. In section 3, the path of moving particle has been
obtained, for the case of quadrupole interaction between particles with planar anchoring. We
are now in a position to make some remarks.

(1) In this paper the dipole–dipole interaction has been considered in parallel and anti-parallel
cases (i.e. two particles with hyperbolic hedgehog defects, accompanying defects on the
same side and different sides of each particle [10]), and repulsive quadrupole interaction
between two particles.

(2) One can monitor the trajectory of the particle in the regimes in which the attractive dipolar
and repulsive quadrupole forces dominate, compare it with figure 2 and 3 respectively and
be sure about the value of q = 3/2 [11].

(3) In a nematic liquid crystal medium, the trajectory of particle motion in the presence
of another particle strongly depends on the initial conditions. In this work we only
use the initial condition r = r0, θ ≈ π/2, v0 = 0 for homotropic anchoring and
r = 2a, θ = 0, v0 = 0 for planar anchoring.

(4) Strong homotropic anchoring results in dipolar symmetry of the director field around
the particle, whereas planar anchoring conditions induce quadrupole interactions between
immersed particles. Kotar et al [18] recently reported their experimental observation of
the interaction between two particles with planar anchoring in one dimension by exerting
an additional force on the moving particle. In our case there is no additional force except
quadrupole and viscous forces. We then have a motion towards the top of the slab, too.

(5) Both the interparticle force F and velocity of a moving particle in the presence of another
particle follow 1/r 4 and 1/r 6 for long-range and short-range regimes respectively. These
quantities are functions of the angle θ , too.

(6) In the homotropic anchoring case the two particles collide with each other at angles 29.23◦
and 150.77◦. In the results of Yada et al [10] the values of the angles are 10◦ and 130◦
respectively. Discrepancies presumably come from the fact that the fixed particles in our
study are not fixed in their experiment.
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